Random Sampling and Signal Reconstruction Based on Compressed Sensing
نویسنده
چکیده
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted as little as possible of the data by applying CS and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the structure and content of the information in the signal. In this paper, the signal is the sparse in the Fourier transform and random sparse sampling is advanced by programming random observation matrix for peak random base. The signal is successfully restored by the use of Bregman algorithm. The signal is described in the transform space, and a theoretical framework is established with a new signal description and processing. By making the case to ensure that the information loss, signal is sampled at much lower than the Nyquist sampling theorem requiring rate, but also the signal is completely restored in high probability. The random sampling has following advantages: alias-free, sampling frequency need not obey the Nyquist limit, and higher frequency resolution. So the random sampling can measure the signals which their frequencies component are close, and can implement the higher frequencies measurement with lower sampling frequency. Copyright © 2014 IFSA Publishing, S. L.
منابع مشابه
A Block-Wise random sampling approach: Compressed sensing problem
The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...
متن کاملRedundancy Reduction for Compressed Sensing based Random Equivalent Sampling Signal Reconstruction
Random equivalent sampling (RES) can composite a waveform with high equivalent sampling rate from multiple low speed sampling sequences. In practical application, the performance of RES signal reconstruction would be degraded by the non-uniform distribution of sampling time. Compressed sensing (CS) theory is adopted to reconstruct RES samples, which could mitigate the inherent coherence of samp...
متن کاملOptimized Sampling Patterns for Practical Compressed MRI
The performance of compressed sensing (CS) algorithms is dependent on the sparsity level of the underlying signal, the type of sampling pattern used and the reconstruction method applied. The higher the incoherence of the sampling pattern used for undersampling, less aliasing will be noticeable in the aliased signal space, resulting in better CS reconstruction. In this work, based on point spre...
متن کاملRandom Sampling and Signal Bregman Reconstruction Based on Compressed Sensing
Compressed sensing (CS) sampling is a sampling method which is based on the signal sparse. Much information can be extracted from as little as possible of the data by applying CS, and this method is the idea of great theoretical and applied prospects. In the framework of compressed sensing theory, the sampling rate is no longer decided in the bandwidth of the signal, but it depends on the struc...
متن کاملThe quest for optimal sampling: Computationally efficient, structure-exploiting measurements for compressed sensing
An intriguing phenomenon in many instances of compressed sensing is that the reconstruction quality is governed not just by the overall sparsity of the signal, but also on its structure. This paper is about understanding this phenomenon, and demonstrating how it can be fruitfully exploited by the design of suitable sampling strategies in order to outperform more standard compressed sensing tech...
متن کامل